wandering pacemaker causes

Enter search terms to find related medical topics, multimedia and more.

Advanced Search:

  • Use “ “ for exact phrases.
  • For example: “pediatric abdominal pain”
  • Use – to remove results with certain keywords.
  • For example: abdominal pain -pediatric
  • Use OR to account for alternate keywords.
  • For example: teenager OR adolescent

Ectopic Supraventricular Arrhythmias

, MD, Libin Cardiovascular Institute of Alberta, University of Calgary

  • 3D Models (0)
  • Calculators (0)

Various rhythms result from supraventricular foci (usually in the atria). Diagnosis is by electrocardiography. Many are asymptomatic and require no treatment.

Overview of Arrhythmias

Ectopic supraventricular rhythms include

Atrial premature beats

Atrial tachycardia, multifocal atrial tachycardia, nonparoxysmal junctional tachycardia, wandering atrial pacemaker.

Chronic Obstructive Pulmonary Disease (COPD)

Atrial premature beat (APB)

APBs may be normally, aberrantly, or not conducted and are usually followed by a noncompensatory pause. Aberrantly conducted APBs (usually with right bundle branch block morphology) must be distinguished from premature beats of ventricular origin.

Atrial escape beats are ectopic atrial beats that emerge after long sinus pauses or sinus arrest. They may be single or multiple; escape beats from a single focus may produce a continuous rhythm (called ectopic atrial rhythm). Heart rate is typically slower, P wave morphology is typically different, and PR interval is slightly shorter than in sinus rhythm.

Atrioventricular Block

Symptoms are those of other tachycardias (eg, light-headedness, dizziness, palpitations, and rarely syncope).

True atrial tachycardia

Vagal maneuvers may be used to slow the heart rate, allowing visualization of P waves when they are hidden, but these maneuvers do not usually terminate the arrhythmia (demonstrating that the AV node is not an obligate part of the arrhythmia circuit).

Cardiac Pacemakers

Nonparoxysmal junctional tachycardia is caused by abnormal automaticity in the AV node or adjacent tissue, which typically follows open heart surgery, acute inferior myocardial infarction, myocarditis, or digitalis toxicity. Heart rate is 60 to 120 beats/minute; thus, symptoms are usually absent. ECG shows regular, normal-appearing QRS complexes without identifiable P waves or with retrograde P waves (inverted in the inferior leads) that occur shortly before ( < 0.1 second) or after the QRS complex. The rhythm is distinguished from paroxysmal supraventricular tachycardia by the lower heart rate and gradual onset and offset. Treatment is directed at causes.

Wandering atrial pacemaker (multifocal atrial rhythm) is an irregularly irregular rhythm caused by the random discharge of multiple ectopic atrial foci. By definition, heart rate is ≤ 100 beats/minute. Except for the rate, features are the same as those of multifocal atrial tachycardia. Treatment is directed at causes.

Drugs Mentioned In This Article

wandering pacemaker causes

Was This Page Helpful?

quiz link

Test your knowledge

Brought to you by Merck & Co, Inc., Rahway, NJ, USA (known as MSD outside the US and Canada) — dedicated to using leading-edge science to save and improve lives around the world. Learn more about the Merck Manuals and our commitment to Global Medical Knowledge.

  • Permissions
  • Cookie Settings
  • Terms of use
  • Veterinary Manual

This icon serves as a link to download the eSSENTIAL Accessibility assistive technology app for individuals with physical disabilities. It is featured as part of our commitment to diversity and inclusion. M

  • IN THIS TOPIC

brand logo

A. KESH HEBBAR, M.D., AND WILLIAM J. HUESTON, M.D.

A more recent article on  common types of supraventricular tachycardia  is available.

Am Fam Physician. 2002;65(12):2479-2487

This is part I of a two-part article on common arrhythmias. Part II, “Ventricular Arrhythmias and Arrhythmias in Special Populations,” appears on page 2491 of this issue.

Family physicians frequently encounter patients with symptoms that could be related to cardiac arrhythmias, most commonly atrial fibrillation or supraventricular tachycardias. The initial management of atrial fibrillation includes ventricular rate control to provide adequate cardiac output. In patients with severely depressed cardiac output and recent-onset atrial fibrillation, immediate electrical cardioversion is the treatment of choice. Hemodynamically stable patients with atrial fibrillation for more than two days or for an unknown period should be assessed for the presence of atrial thrombi. If thrombi are detected on transesophageal echocardiography, anticoagulation with warfarin for a minimum of 21 days is recommended before electrical cardioversion is attempted. Patients with other supraventricular arrhythmias may be treated with adenosine, a calcium channel blocker, or a short-acting beta blocker to disrupt reentrant pathways. When initial medications are ineffective, radiofrequency ablation of ectopic sites is an increasingly popular treatment option.

Heart palpitations and cardiac arrhythmias are common problems encountered by family physicians. Patients may present with acute cardiac rhythm abnormalities. Although these arrhythmias are usually benign, they can indicate significant underlying heart disease. More often, patients have chronic arrhythmias, such as atrial fibrillation, that may require treatment to reduce the risk of future complications. The challenges for the family physician are to determine which arrhythmias are benign and which indicate probable cardiac malfunction, and to manage recurrent or chronic rhythm abnormalities.

This two-part article reviews common atrial and ventricular arrhythmias, with a focus on initial management decisions. Part I discusses supraventricular arrhythmias. Part II discusses ventricular arrhythmias and the management of rhythm abnormalities in special populations, including pregnant women, athletes, and children.

Atrial Fibrillation

Atrial fibrillation is the most common cardiac arrhythmia family physicians are likely to encounter. This rhythm abnormality affects 3 to 5 percent of patients more than 60 years of age 1 and becomes increasingly common with advancing age. The median age of patients with atrial fibrillation is 75 years, and the prevalence of the arrhythmia doubles every 10 years after the age of 55. 2 , 3 In the United States, atrial fibrillation is estimated to affect almost 9 percent of patients more than 75 years of age. 2

Most risk factors for atrial fibrillation are associated with structural or ischemic heart disease. Risk factors include hypertension, left ventricular hypertrophy, dilated and restrictive cardiomyopathies, coronary artery disease, chronic obstructive pulmonary disease, and diabetes in women. 1

The annual risk of stroke in patients with atrial fibrillation and normal valve function has been reported to be 4.5 percent per year. 4 Anticoagulation with warfarin (Coumadin) reduces the risk by about two thirds. 4 The mortality rate for stroke in patients with atrial fibrillation is approximately twice as high as the rate in patients without this rhythm abnormality. 5 Although anticoagulation is contraindicated in some elderly patients, a study in Great Britain 6 found that about 60 percent of patients identified in community screenings as having atrial fibrillation were eligible for, and would benefit from, this treatment.

The first step in managing a patient with atrial fibrillation is to decide whether there is a high likelihood of safe conversion to sinus rhythm or whether the patient should be allowed to remain in atrial fibrillation. A patient with recent onset of atrial fibrillation (within the previous 12 months) and no evidence of enlargement of the left atrium has a greater chance of achieving and maintaining sinus rhythm. If the arrhythmia is long-standing and the patient is not a suitable candidate for rate cardioversion, initial treatment should focus on ventricular rate control, with consideration given to long-term stroke prophylaxis.

Restoration of Sinus Rhythm

Patients who present within 48 hours of the onset of new atrial fibrillation are candidates for cardioversion with a low risk of embolism. Conversion to sinus rhythm can be attempted by electrical shock or with antiarrhythmic drugs. Patients who have been in atrial fibrillation for more than 48 hours or for an undetermined period are more likely to have atrial thrombi and may develop emboli with immediate electrical or medical (pharmacologic) cardioversion.

Atrial thrombi are not evident on transthoracic echocardiograms, but they can been seen on transesophageal echocardiograms. 7 If the transesophageal echocardiogram reveals thrombi, anticoagulation is recommended before cardioversion is attempted. Anticoagulation can be accomplished using warfarin, with the dosage adjusted to achieve an International Normalized Ratio (INR) between 2.0 and 3.0 for a minimum of 21 days. 8

If the transesophageal echocardiogram does not show thrombi on multiplane views, cardioversion can be attempted. Short-term anticoagulation with heparin should be started before the procedure, and warfarin therapy should be initiated after cardioversion. 8

When rhythm conversion is indicated, it can be accomplished using direct-current cardioversion or pharmacologic therapy. Synchronized cardioversion is currently considered the treatment of choice for the restoration of sinus rhythm and, in appropriately selected patients, has a success rate of at least 80 percent. 4 Cardioversion is also indicated in patients with hypotension, angina, heart failure, or other evidence of severe compromise caused by atrial fibrillation. 5

Medical cardioversion of atrial fibrillation may be achieved with class IA drugs (quinidine, disopyramide [Norpace], procainamide [Procanbid]) or with amiodarone (Cordarone). In the past, quinidine was frequently used for both cardioversion and maintenance of sinus rhythm in patients who had undergone electrical cardioversion. However, because of the proarrhythmic action of class IA agents and their detrimental effects on left ventricular function, these drugs are now used less often than amiodarone for primary therapy of atrial fibrillation. 4

Amiodarone therapy is successful in 86 percent of patients who have had atrial fibrillation for less than two years. 4 , 9 Treatment is also effective in 40 to 60 percent of patients with long-standing atrial fibrillation that has been resistant to other agents and to electrical cardioversion. 4 Amiodarone can be given in a dosage of 200 mg a day, which is lower than the dosages that have been associated with thyroid abnormalities and pulmonary fibrosis. Although there is little risk of toxicity when amiodarone is given in a low dosage, it is prudent to monitor patients for the development of thyroid, pulmonary, hepatic, and cardiac side effects.

Findings on the usefulness of various agents for the conversion of atrial fibrillation, based on the evidence-based practice program of the Agency for Healthcare Research and Quality, are summarized in Table 1 . 10 Although drugs such as digitalis preparations and sotalol (Betapace) are sometimes used for rate control, they are not effective for converting atrial fibrillation to sinus rhythm. 10 , 11

If external electrical cardioversion is unsuccessful and antiarrhythmic drug therapy fails, other measures can be used. However, these approaches are usually reserved for use in patients who cannot tolerate atrial fibrillation and patients who have associated systolic dysfunction. Techniques include internal electrical cardioversion through the application of electrical current to pulmonary veins via a transcatheter cathode 4 and radiofrequency ablation of the atrioventricular node with insertion of a ventricular pacemaker. 12 In addition, an implantable atrial defibrillator can be used to provide rapid cardioversion in patients with atrial fibrillation that cannot be controlled with medications. 13

Rate Control in Chronic Atrial Fibrillation

In patients in whom rhythm conversion is not indicated or those who have new-onset atrial fibrillation with a rapid ventricular response, treatment may be needed to control the ventricular rhythm. Excessive ventricular rates may result in diminished cardiac output because of poor filling time, and in ischemia because of increased myocardial oxygen demand. Medications used for ventricular rate control in patients with atrial fibrillation are listed in Table 2 . 14

Acute management of ventricular rates can usually be achieved with intravenously administered diltiazem (Cardizem), given in an initial bolus of 15 to 20 mg (0.25 mg per kg) over two minutes, or with an intravenously administered beta blocker such as propranolol (Inderal), given in a dose of 0.5 to 1 mg (up to 3 to 5 mg if needed).

A number of medications, including calcium channel blockers, beta blockers, and digoxin (Lanoxin), are effective for maintaining ventricular rates within acceptable ranges. Because calcium channel blockers are associated with better exercise tolerance, they may be preferable to beta blockers. 15 Digoxin is associated with a high degree of exercise intolerance; therefore, it should be reserved for use in patients who are relatively immobile, who cannot tolerate other treatment options, or who have significant ventricular dysfunction.

Paroxysmal Supraventricular Tachycardias

Based on duration, supraventricular tachycardias are usually categorized as paroxysmal, persistent, or chronic. Paroxysmal supraventricular tachycardia (PSVT) is the most common of these arrhythmias and the one that is most often encountered in the primary care setting. Longer-duration supraventricular tachycardias can be treated similarly to PSVT, but cardiology consultation is often required to identify the electrophysiologic mechanism responsible for sustaining the arrhythmia. In contrast to ventricular tachycardias (discussed in part II of this article) and atrial fibrillation, PSVT is usually a narrow-complex tachycardia with a regular rate.

Atrioventricular Nodal Reentry Causing PSVT

Atrioventricular nodal reentry, the most common mechanism of PSVT, occurs when two pathways exist with different conduction rates. A premature atrial complex that is blocked in the fast pathway and redirected through the slow pathway usually triggers the tachycardia ( Figure 1 ) . The electrical signal proceeds down the slow pathway and then reenters the fast pathway in a retrograde direction. By the time the signal has propagated down the slow pathway and back around on the fast pathway, the slow pathway is no longer refractory and is ready to conduct the signal again, completing a continuous circuit.

Reentrant tachycardias usually produce a narrow-complex tachycardia with no discernible P wave. The rate is usually between 160 and 190 beats per minute. In a less common form of atrioventricular nodal reentrant tachycardia, the circulating wavefront proceeds in an antegrade fashion down the fast pathway and in a retrograde fashion up the slow pathway. In this form, inverted P waves ( Figure 2 ) are clearly visible in lead II of the electrocardiogram (ECG).

It is important to note that atrioventricular nodal reentrant tachycardia can result in a wide-complex tachycardia if the patient has preexisting bundle branch block.

Accessory Pathways Causing PSVT

Accessory pathways (Wolff-Parkinson-White syndrome) and other bypass tracts can cause PSVT. In patients with Wolff-Parkinson-White syndrome, a shortened PR interval and a slurred upstrike to the QRS complex “delta wave” on the resting ECG indicate the presence of an accessory pathway ( Figure 3 ) .

It should be noted that the resting ECG may be normal in some patients with Wolff-Parkinson-White syndrome, because of the inability of the accessory pathway to conduct in the antegrade direction. The usual mechanism of PSVT in this setting is antegrade conduction down the normal pathways through the atrioventricular node and retrograde conduction through the accessory pathway.

The ECG in an atrial arrhythmia with an accessory pathway usually shows a narrow-complex tachycardia at rates of 160 to 240 beats per minute. Delta waves are absent because the normal pathways are used for ventricular activation. Inverted P waves may be seen in the inferior leads. In a much less common form of PSVT, antegrade conduction is down the bypass tract and results in a wide-complex tachycardia.

Increased Automaticity Causing PSVT

Increased automaticity usually occurs when the atrium is enlarged, as in patients with chronic lung disease, congestive heart failure, or electrolyte and acid-base disturbances. Usually, the stretched atria fire irregularly, producing multiple premature beats that emanate from different areas of the atria. Because the foci for the ectopic beats are in multiple sites, the P waves vary in morphology, giving rise to the term “multifocal atrial tachycardia.”

The diagnosis of multifocal atrial tachycardia depends on the identification of an irregular rhythm with three or more different P-wave morphologies. The rate is usually between 130 and 180 beats per minute. Treatment is directed at correcting the underlying cause. Antiarrhythmic drugs are usually not helpful.

In most patients, PSVT is benign and self-limited. However, some patients can have angina, hypotension, and intense anxiety. The first step in the management of PSVT is to determine whether the patient is hemodynamically stable. If PSVT is sustained and there is any indication of instability (i.e., angina, shortness of breath, decreased level of consciousness, hypotension, or congestive heart failure), electrical cardioversion should be performed urgently.

If the symptoms are restricted to discomfort (e.g., palpitations and anxiety), conservative measures should be applied. Conservative management of PSVT can include both nonpharmacologic and pharmacologic measures ( Table 3 ) . 16

Vagal maneuvers to increase parasympathetic tone and slow conduction through the atrioventricular node should be the first approach. Patients should be taught some of these maneuvers for use in future episodes. They should also be instructed to avoid inciting factors, such as caffeine, tobacco, alcohol, pseudoephedrine, and stress. Carotid sinus massage can be attempted, but its role hasbecome more limited because of the effectiveness of drug therapy and the risk of embolism from carotid pressure in some patients.

The goal of pharmacologic management is to slow or block atrioventricular nodal conduction. Agents used for this purpose include adenosine (Adenocard), calcium channel blockers (verapamil [Calan] or diltiazem), and beta blockers (e.g., esmolol [Brevibloc]).

Adenosine is an ultra–short-acting agent that is cleared quickly (half-life of 1 to 6 seconds). This agent is given intravenously in an initial dose of 6 mg, which is followed by one or two 12-mg boluses. Adenosine works by reducing conductance along the slow antegrade pathway. Side effects include flushing, dyspnea, and chest pain. Because of the short half-life of adenosine, these effects are usually very brief and do not ordinarily result in complications.

One advantage of adenosine is that it lacks the negative inotropic effects of calcium channel blockers. Adenosine can also decrease the sinus rate transiently and produce a “rebound” sinus tachycardia. Adenosine should not be used in patients with heart transplants, because such patients may be too sensitive to its effects. 17

Calcium channel blockers can also be used to disrupt a reentrant pathway. Verapamil can be given in a 5- to 10-mg bolus over 2 minutes, followed by 10 mg in 15 to 30 minutes if the initial dose does not convert the arrhythmia. 18 Verapamil and other calcium channel blockers should not be used in patients with an undiagnosed wide-complex tachycardia, because of the risk of fatal hypotension or ventricular fibrillation if the arrhythmia is actually ventricular tachycardia and not PSVT. 19

Intravenously administered diltiazem is also effective. 20 Initial treatment consists of a bolus of 0.25 mg per kg administered over two minutes. A repeat bolus of 0.35 mg per kg given over two minutes can be administered 15 minutes later.

Esmolol, a short-acting beta blocker, can be given in an intravenous bolus of 0.5 mg per kg over 1 minute or in an infusion at a rate of 0.5 mg per kg per minute after an initial loading dose of 0.5 mg per kg. An advantage of esmolol over other beta blockers is its short half-life (four to five minutes), compared with the much longer half-lives (three hours or more) of most other beta blockers. Because of a similar depressive effect on left ventricular contractility, esmolol should be used with caution if initial treatment with a calcium channel blocker is not successful.

Other antiarrhythmic drugs, including quinidine, procainamide, flecainide (Tambocor), and amiodarone, may be used in patients who do not respond to initial medications. However, selective radiofrequency ablation is rapidly becoming the treatment of choice in this situation.

Long-term control of recurrent PSVT caused by atrioventricular nodal reentry may be achieved with pharmacologic therapy or radiofrequency ablation. Patients who have infrequent, well-tolerated recurrences may manage these episodes with self-administered physiologic maneuvers.

Radiofrequency ablation is now used early in the management of patients with PSVT caused by an accessory pathway (Wolff-Parkinson-White syndrome), atrioventricular nodal reentrant tachycardia, or atrial tachycardia. 21 The success rate for radiofrequency ablation is 95 percent in patients with an accessory pathway or atrioventricular nodal reentrant tachycardia, and approximately 80 percent in patients with atrial tachycardia. 21

Other Atrial Arrhythmias

Sinus arrhythmia.

Sinus arrhythmia is usually a normal event in young persons and athletes. In fact, it occurs with such high frequency that it may considered a normal variant rather than a true arrhythmia.

There are two forms of sinus arrhythmia. In the “respiratory” form, the RR interval shortens during inspiration and slows during expiration. Breath-holding eliminates the variation. In the “nonrespiratory” form, the same phasic variation is seen in the RR interval but is not related to respirations. This form of sinus arrhythmia occurs in elderly patients, patients with digoxin overdose, and patients with increased intracranial pressure.

Sinus arrhythmia is usually asymptomatic. Sometimes, however, the long pauses can cause dizziness or syncope. Treatment is usually unnecessary.

WANDERING ATRIAL PACEMAKER

Patients with wandering atrial pacemaker are usually not symptomatic. The condition is most often an isolated finding on the ECG and requires no treatment. Sometimes it is noted on physical examination as an irregularly irregular rhythm.

With wandering atrial pacemaker, the ECG shows variable P-wave morphology and PR intervals. The atrial impulses conduct in a 1:1 fashion and usually control the rhythm for several beats before shifting to another focus. The normal heart rate in wandering atrial pacemaker differentiates this condition from multifocal atrial tachycardia.

PREMATURE ATRIAL COMPLEXES

A premature atrial complex is generated from an ectopic focus in the atria. Therefore, the P wave is usually different in morphology from the usual sinus P wave. The impulse conducts along the normal pathways, generating a narrow QRS complex followed by a pause. Sometimes the premature atrial complex is not conducted and can mimic heart block ( Figure 4 ) .

Premature atrial complexes are found in a variety of settings, including the excessive consumption of caffeine or alcohol and the use of sympathomimetic drugs. These complexes can also be present in patients with structural heart disease.

Patients with premature atrial complexes are usually asymptomatic and require no treatment. A beta blocker given in a low dosage can be tried in patients with uncomfortable symptoms, but no studies of efficacy have been reported. Patients should be counseled to decrease their intake of caffeine, tobacco, and alcohol, and their use of over-the-counter sympathomimetic substances, which are often present in cold medicines and weight-loss preparations.

It is important to note that premature atrial complexes sometimes precipitate supraventricular tachycardia, atrial flutter, or atrial fibrillation.

Sinus Nodal Arrhythmias

Sinus pause and sinoatrial exit block.

Sinus pause or arrest occurs when the sinoatrial node fails to discharge. The ECG shows a pause in the sinus rhythm, with no preceding P wave. Patients usually have no symptoms, but if the pause is prolonged, they may have lightheadedness, palpitations, syncope, and falls. In sinus arrest, the length of the pause has no relationship to the PP interval. Sinoatrial exit block is recognized by the pauses being multiples of PP intervals.

Sinus node dysfunction is usually caused by drugs such as digoxin, quinidine, or procainamide. It can also be caused by ischemia, myocarditis, or fibrosis.

From a therapeutic standpoint, it is probably not important to distinguish between sinus arrest and sino-atrial exit block. Both can occur in well-trained athletes 22 and can be a factor in sick sinus syndrome. 23

SICK SINUS SYNDROME

The term “sick sinus syndrome” encompasses a number of abnormalities, including sinus bradycardia, sinus arrest or exit block, combinations of sinoatrial and atrioventricular nodal conduction disturbances, and atrial tachyarrhythmias. More than one of these arrhythmias may be recorded in the same patient (bradycardia-tachycardia syndrome).

The abnormalities in sick sinus syndrome are usually due to ischemia, fibrosis, or drug-induced or autonomic dysfunction. Signs and symptoms are related to cerebral hypoperfusion and reduced cardiac output.

Treatment of recurrent symptomatic bradycardia or prolonged pauses requires implantation of a permanent pacemaker. 24

Levy S. Epidemiology and classification of atrial fibrillation. J Cardiovasc Electrophysiol. 1998;9(8 suppl):S78-82.

Ryder KM, Benjamin EJ. Epidemiology and significance of atrial fibrillation. Am J Cardiol. 1999;84(9A):R131-8.

Benjamin EJ, Levy D, Vaziri SM, D'Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271:840-4.

Golzari H, Cebul RD, Bahler RC. Atrial fibrillation: restoration and maintenance of sinus rhythm and indications for anticoagulation therapy. Ann Intern Med. 1996;125:311-23.

Pritchett EL. Management of atrial fibrillation. N Engl J Med. 1992;326:1264-71.

Sudlow M, Thomson R, Thwaites B, Rodgers H, Kenny RA. Prevalence of atrial fibrillation and eligibility for anticoagulants in the community. Lancet. 1998;352:1167-71.

Falk RH. Atrial fibrillation. N Engl J Med. 2001;344:1067-78.

Manning WJ, Silverman DI, Keighley CS, Oettgen P, Douglas PS. Transesophageal echocardiographically facilitated early cardioversion from atrial fibrillation using short-term anticoagulation: final results of a prospective 4.5-year study. J Am Coll Cardiol. 1995;25:1354-61.

Santos AL, Aleixo AM, Landieri J, Luis AS. Conversion of atrial fibrillation to sinus rhythm with amiodarone. Acta Med Port. 1979;1:15-23.

Management of new onset atrial fibrillation. Summary, evidence report/technology assessment: no. 12. Rockville, Md.: Agency for Healthcare Research and Quality, May 2000; AHRQ publication no. 00-E006. Retrieved April 23, 2002, from www.ahcpr.gov/clinic/epcsums/atrialsum.htm .

Falk RH, Knowlton AA, Bernard SA, Gotlieb NE, Battinelli NJ. Digoxin for converting recent-onset atrial fibrillation to sinus rhythm. A randomized, double-blinded trial. Ann Intern Med. 1987;106:503-6.

Pappone C, Rosanio S, Oreto G, Tocchi M, Gugliotta F, Vicedo-mini G, et al. Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation. Circulation. 2000;102:2619-28.

Swerdlow CD, Schsls W, Dijkman B, Jung W, Sheth NV, Olson WH, et al. Detection of atrial fibrillation and flutter by a dual-chamber implantable cardioverter-defibrillator. For the Worldwide Jewel AF Investigators. Circulation. 2000;101:878-85.

Physicians' desk reference. 56th ed. Montvale, N.J.: Medical Economics, 2002.

Segal JB, McNamara RL, Miller MR, Kim N, Goodman SN, Powe NR, et al. The evidence regarding the drugs used for ventricular rate control. J Fam Pract. 2000;49:47-59.

Myerburg RJ, Kessler KM, Castellanos A. Recognition, clinical assessment, and management of arrhythmias and conduction disturbances. In: Alexander RW, Schlant RC, Fuster V, eds. Hurst's The heart, arteries and veins. 9th ed. New York: McGraw-Hill, Health Professions Division, 1998:873–942.

O'Nunain S, Jennison S, Bashir Y, Garratt C, McKenna W, Camm AJ. Effects of adenosine on atrial repolarization in the transplanted human heart. Am J Cardiol. 1993;71:248-51.

Rinkenberger RL, Prystowsky EN, Heger JJ, Troup PJ, Jackman WM, Zipes DP. Effects of intravenous and chronic oral verapamil administration in patients with supraventricular tachyarrhyth-mias. Circulation. 1980;62:996-1010.

Stewart RB, Bardy GH, Greene HL. Wide complex tachycardia: misdiagnosis and outcome after emergent therapy. Ann Intern Med. 1986;104:766-71.

Betriu A, Chaitman BR, Bourassa MG, Brevers G, Scholl JM, Bruneau P, et al. Beneficial effect of intravenous diltiazem in the acute management of paroxysmal supraventricular tach-yarrhythmias. Circulation. 1983;67:88-94.

Morady F. Radio-frequency ablation as treatment for cardiac arrhythmias. N Engl J Med. 1999;340:534-44.

Bjornstad H, Storstein L, Meen HD, Hals O. Ambulatory electrocardiographic findings in top athletes, athletic students and control subjects. Cardiology. 1994;84:42-50.

Wu DL, Yeh SJ, Lin FC, Wang CC, Cherng WJ. Sinus automaticity and sinoatrial conduction in severe symptomatic sick sinus syndrome. J Am Coll Cardiol. 1992;19:355-64.

Haywood GA, Katritsis D, Ward J, Leigh-Jones M, Ward DE, Camm AJ. Atrial adaptive rate pacing in sick sinus syndrome: effects on exercise capacity and arrhythmias. Br Heart J. 1993;69:174-8.

Continue Reading

More in afp, more in pubmed.

Copyright © 2002 by the American Academy of Family Physicians.

This content is owned by the AAFP. A person viewing it online may make one printout of the material and may use that printout only for his or her personal, non-commercial reference. This material may not otherwise be downloaded, copied, printed, stored, transmitted or reproduced in any medium, whether now known or later invented, except as authorized in writing by the AAFP.  See permissions  for copyright questions and/or permission requests.

Copyright © 2024 American Academy of Family Physicians. All Rights Reserved.

WikEM

  • Mobile Apps
  • Journal Club
  • Antibiotics
  • Quick Critical Care
  • Residency Directory
  • Recent Changes
  • About WikEM
  • Getting Started
  • Creating & Editing
  • Needed Pages
  • Editorial Levels
  • Contribution Score
  • Elective Guide
  • Citing WikEM
  • What links here
  • Related changes
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • Browse properties

Harbor-UCLA

  • View source
  • View history
  • Create account

WikEM

Please donate! Funds go solely to hosting and development costs that allow medical practitioners around the globe to freely access WikEM.

  • Wandering atrial pacemaker
  • 2 Clinical Features
  • 3.1 Palpitations
  • 4.2 Diagnosis
  • 5 Management
  • 6 Disposition
  • 8 External Links
  • 9 References
  • Three or more ectopic foci within the atrial myocardium serve as the pacemaker
  • Rate is less than 100bpm (in contrast to MAT )
  • Is irregularly irregular therefore sometimes confused with atrial fibrillation and sinus arrhythmia
  • Intrinsic cardiac or pulmonary disease
  • Metabolic derangements
  • Drug toxicity (including Digoxin )

Clinical Features

  • Often seen in the extremes of age and in athletes
  • Rarely causes symptoms

Differential Diagnosis

Palpitations.

  • Narrow-complex tachycardias
  • Wide-complex tachycardias
  • Second Degree AV Block Type I (Wenckeback)
  • Second Degree AV Block Type II
  • Third Degree AV Block
  • Premature atrial contraction
  • Premature junctional contraction
  • Premature ventricular contraction
  • Sick sinus syndrome
  • Acute coronary syndrome
  • Cardiomyopathy
  • Congenital heart disease
  • Congestive heart failure (CHF)
  • Mitral valve prolapse
  • Pacemaker complication
  • Pericarditis
  • Myocarditis
  • Valvular disease
  • Panic attack
  • Somatic Symptom Disorder
  • Drugs of abuse (e.g. cocaine )
  • Medications (e.g. digoxin , theophylline )
  • Thyroid storm
  • Pulmonary embolism
  • Dehydration
  • Pheochromocytoma

Wandering atrial pacemaker.JPG

  • ECG should show three distinct P wave morphologies with a ventricular rate <100bpm
  • Rarely requires treatment

Disposition

  • Outpatient management
  • Multifocal atrial tachycardia
  • Dysrhythmia

External Links

  • Richard Cunningham
  • fardis tavangary
  • Ross Donaldson
  • Privacy policy
  • Disclaimers

Wolters Kluwer

Learn how UpToDate can help you.

Select the option that best describes you

  • Medical Professional
  • Resident, Fellow, or Student
  • Hospital or Institution
  • Group Practice
  • Patient or Caregiver
  • Find in topic

RELATED TOPICS

INTRODUCTION

This topic will review the definition, pathogenesis, etiology, and treatment of MAT in adults. Other tachycardias of atrial origin, as well as the discussion of this arrhythmia in children, are reviewed separately. (See "Focal atrial tachycardia" and "Atrial tachyarrhythmias in children" and "Atrioventricular nodal reentrant tachycardia" and "Atrioventricular reentrant tachycardia (AVRT) associated with an accessory pathway" and "Atrial fibrillation: Overview and management of new-onset atrial fibrillation" .)

DEFINITION, PATHOGENESIS, AND PREVALENCE

Terminology  —  A number of authors have used the term "chaotic" to describe MAT [ 3-5 ]. However, chaos in modern usage in nonlinear dynamics and mathematics implies there is order in what appear to be random events [ 6 ]. A more accurate term for this arrhythmia is probably "multiform" as there is no proof that the arrhythmia is actually multifocal, although multifocal remains the commonly used term [ 1 ].

The tachycardic threshold for multifocal atrial tachycardia (MAT) has traditionally been set at 100 bpm, but a review of 60 patients with multifocal atrial arrhythmias found a stronger association between the incidence of COPD exacerbations and the diagnosis of MAT if a threshold of 90 bpm was used [ 7 ]. The definition of MAT also requires the presence of at least three distinct P-wave morphologies.

We have a new app!

Take the Access library with you wherever you go—easy access to books, videos, images, podcasts, personalized features, and more.

Download the Access App here: iOS and Android . Learn more here!

  • Remote Access
  • Save figures into PowerPoint
  • Download tables as PDFs

ECG in 10 Days, 2e

Day 6:  Ectopic Arrhythmias and Triggered Activity

  • Download Chapter PDF

Disclaimer: These citations have been automatically generated based on the information we have and it may not be 100% accurate. Please consult the latest official manual style if you have any questions regarding the format accuracy.

Download citation file:

  • Search Book

Jump to a Section

Day 6: ectopic arrhythmias and triggered activity.

  • Interpretations of Sample Tracings
  • Full Chapter
  • Supplementary Content

Ectopy—a disorder of impulse formation

Mechanisms of ectopic arrhythmias

Ectopic arrhythmias require:

Default—slowing of the normal dominant sinus pacemaker which allows a slower focus to take control, or

Usurpation—an acceleration of a lower pacemaker which takes control by virtue of being faster than the sinus rate

Disorders of the sinus node, such as SA arrest, SA exit block, or excessive vagal tone may allow a lower focus to take control by default

A variety of factors, including digitalis toxicity, hypoxia, electrolyte disturbances, ischemia, or chronic lung disease may stimulate an ectopic focus to accelerate and usurp control from the SA node

Properties of ectopic arrhythmias

Ectopic arrhythmias usually start and stop gradually ( non-paroxysmally )

They are not usually initiated by a premature beat

They may be somewhat irregular

They are not terminated by vagal maneuvers, although AV block may be increased

AV block of varying degrees is frequently present (particularly if digitalis toxicity is the cause)

These arrhythmias are usually quite resistant to treatment with standard class I or III agents

Catheter ablation may be effective if a causative agent cannot be identified or treated

The major ectopic arrhythmias

Wandering atrial pacemaker

Mechanisms and causes

There are three or more ectopic atrial pacemakers

This arrhythmia is typically seen in young healthy persons, particularly athletes

The etiology is uncertain

Heart rate—the heart rate is 60–100 and is usually irregular

ECG morphology ( Day 6-01 )

There are at least three P wave morphologies with varying PR intervals

There is usually moderate variation in the heart rate

Multifocal atrial tachycardia

Caused by multiple ectopic atrial foci

Chronic lung disease is typically the underlying clinical abnormality, although it can also occur in the setting of hypoxia, electrolyte abnormalities, acid-base disturbances, and ischemia (i.e., frequently in the intensive care setting)

ECG morphology ( Day 6-02 )

The rate is 100–140

There is typically 1:1 AV conduction

This arrhythmia is frequently confused with atrial fibrillation; the distinction is an important one since management is usually very different

Ectopic atrial rhythms

A single ectopic atrial focus accelerates and usurps control from the sinus node, or the sinus node slows down and allows an ectopic focus to appear

Digitalis toxicity, electrolyte abnormalities, ischemia, hypoxia, and chronic lung disease are typical causes

ECG morphology ( Day 6-03 ) ( Day 6-04 )

The P waves are of the same morphology but have an abnormal axis, indicating their ectopic origin

The atrial rate may be slightly irregular

AV block of varying degrees is sometimes present (particularly if digitalis toxicity is the cause)

Atrial tachycardia with AV block should be considered a manifestation of digitalis toxicity until proven otherwise ( Day 6-05 )

The atrial rate in atrial tachycardia is usually 140–200

Your Access profile is currently affiliated with '[InstitutionA]' and is in the process of switching affiliations to '[InstitutionB]'. Please click ‘Continue’ to continue the affiliation switch, otherwise click ‘Cancel’ to cancel signing in.

Sign in or create a free Access profile below to access even more exclusive content.

With an Access profile, you can save and manage favorites from your personal dashboard, complete case quizzes, review Q&A, and take these feature on the go with our Access app.

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.

Please Wait

Free Web Hosting

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • v.13(9); 2021 Sep

Logo of cureus

Electrical Injury and Wandering Atrial Pacemaker

Ranjan k singh.

1 Internal Medicine, Anti-Retroviral Therapy Centre, District Hospital, Khagaria, IND

The supply of household electricity remains a low-voltage (110-220 V) energy source, and its effects on the human body depend on several factors, including the type of contact and duration of contact, among other things. In a significant number of cases, direct contact with household electricity causes reversible cardiac arrhythmia-ventricular fibrillation, ventricular premature beats, atrial tachycardia, and atrial fibrillation.

Wandering atrial pacemaker (WAP) is a benign atrial arrhythmia observed in elderly patients suffering from obstructive pulmonary diseases that result from an ischemic heart. This report discusses WAP as observed in a patient who suffered an electrical injury.

Introduction

The effects of electrical injury vary from skin burn to internal organ damage directed especially at the cardiovascular and nervous systems. The extent of electrical injury depends on the type of electricity source, i.e., direct current (DC) or alternating current (AC), the duration of contact with the source of electricity, the state of the body whether wet or dry, the presence of calluses over the palm, the route of electrical flow, and the level of voltage [ 1 ]. The severity of an electric shock depends on the current flow (I) measured in ampere (A). It is linked to the resistance of the conductor (R, unit: ohm ‘W’) and the potential difference between the two ends of a conductor (Volt; unit V), and is derived by applying the formula based on Ohm’s law: i.e., I = V/R. The severity of an electrical burn, by contrast, depends on the energy (Watt) and is derived from Joule’s formula W=I2 x R x T (duration of exposure with the source of current).

Household electrical supply is a low-voltage (220 V) AC at 60 Hz frequency. The physiological effects of contact with a low-frequency AC (60 Hz) current vary at different amperes. For example, 1mA (1/1000 A) is barely perceptible as numbness, whereas 20 mA can cause respiratory muscle paralysis, while 100 mA reaches a threshold for ventricular fibrillation [ 1 , 2 ]. The resulting cardiac arrhythmia may take the form of ventricular fibrillation, ventricular tachycardia, ventricular premature beats, atrial premature beats, atrial arrhythmia, and/or heart block [ 2 ].

Case presentation

A 40-year-old male patient was brought into the emergency ward after suffering an accidental electrical injury that involved an entry wound in the middle of his left hand and an exit wound in the back of his chest. He was holding the hanging rod for a ceiling fan when the connection was plugged in, resulting in electric shock. He lost consciousness and fell to the ground with the rod clenched in his hand for a minute and a half. The electricity source was disconnected and cardiopulmonary resuscitation was administered to the patient by his neighbors. The patient regained consciousness and complained of aching all over the body along with general weakness. 

He had a black hole in the middle of his left palm (Figure ​ (Figure1A) 1A ) and a linear burn on the back of his chest (Figure ​ (Figure1B 1B ).

An external file that holds a picture, illustration, etc.
Object name is cureus-0013-00000018335-i01.jpg

His pulse was irregularly irregular at 78/minute, and his blood pressure was 110/78 mm Hg. His total leucocyte count was 8600/cmm with neutrophils at 64%, and his hemoglobin was 13 gm/dL. Urinalysis did not show myoglobin. Serum sodium and potassium were 134 mEq/L and 4.2 mEq/L, respectively. Electrocardiography (ECG) showed occasional ventricular premature beat with wandering atrial pacemaker (Figures ​ (Figures2A 2A - ​ -2B). 2B ). Of note, the patient did not have any kind of cardiac ailment previously. The patient was hydrated with intravenous fluids and his wounds were treated with antiseptic dressings and antibiotics. He remained under observation for 48 hours and the ECG showed sinus rhythm (Figure ​ (Figure2C 2C ).

An external file that holds a picture, illustration, etc.
Object name is cureus-0013-00000018335-i02.jpg

Low voltage currents cause severe electrical burns to the skin as a result of high energy output from the current flow. Dry skin with callouses over palm (resistance of 500 W) and a long contact of palm with the source of electricity attribute to severe burn in this patient (Joule formula). Thereby, the electrical energy output is dissipated and there is less internal injury [ 3 , 4 ].

Low voltage currents travel through the body along low-resistance pathway nerves and blood vessels to cause severe cardiac injury. Also, the distance between the entry and exit wounds can determine the severity of the cardiac injury. The heart remains in the central location of the electrical current’s pathway between the left palm and back of the chest. Current spikes occur in the palm and fingers of an individual holding a metal rod that is suddenly connected to an electric source [ 5 ]. The electric shock causes depolarisation of cardiac muscles and increases membrane pores of the cells resulting in arrhythmias; sinus tachycardia, ventricular premature beats, ventricular tachycardia, and atrial fibrillation are common [ 6 , 7 ]. Wandering atrial pacemaker (WAP) is a benign atrial arrhythmia that has been observed in this case study. WAP and multifocal atrial tachycardia (MAT) differ only with the heart rate - WAP has a heart rate less than 100 bpm whereas MAT has a heart rate greater than 100 bpm. In the WAP rhythm, the pacemaker wanders with the impulses originating from the sinoatrial node to the atrium, and to the atrioventricular junction with a changing focus. Hence, the P waves on an ECG are presented in different configurations. WAP is differentiated from sinus arrhythmia by the fact that heart rate variability occurs from beat-to-beat, and is not phasic. Also, in sinus arrhythmia, the P-wave morphology and the P-R interval are constant [ 7 ]. Most of the arrhythmias occur soon after electric shock and are short-lived. However, delayed arrhythmias occurring 12 hours after electric shock have been reported, too [ 8 ].

Conclusions

Household electric supply is low voltage AC of 60 Hz. It is the electric current that determines the pathophysiological effects in the body but the voltage does determine the outcome of electric shock. Even a low-voltage shock can cause ventricular fibrillation if resistance is low and current flow reaches a threshold of 100 mA. The severity of burn lesion is determined by the resistance of skin and duration of exposure with the source of current. Most cardiac arrhythmias are short-lived and do not require treatment.

The content published in Cureus is the result of clinical experience and/or research by independent individuals or organizations. Cureus is not responsible for the scientific accuracy or reliability of data or conclusions published herein. All content published within Cureus is intended only for educational, research and reference purposes. Additionally, articles published within Cureus should not be deemed a suitable substitute for the advice of a qualified health care professional. Do not disregard or avoid professional medical advice due to content published within Cureus.

The authors have declared that no competing interests exist.

Human Ethics

Consent was obtained or waived by all participants in this study. NA issued approval NA. This is a case report.

Wandering Atrial Pacemaker EKG Interpretation with Rhythm Strip

Ekg features, wandering atrial pacemaker ekg interpretation example.

This website is only for professional medical education. Contact your doctor for medical care. 2024 © MedEdu LLC. All Rights Reserved. Terms & Conditions | About Us | Privacy | Email Us

mededu company logo

LITFL-Life-in-the-FastLane-760-180

Multifocal Atrial Tachycardia (MAT)

  • Ed Burns and Robert Buttner
  • Jun 4, 2021

Multifocal Atrial Tachycardia (MAT) Overview

  • A rapid, irregular atrial rhythm arising from multiple ectopic foci within the atria.
  • Most commonly seen in patients with severe COPD  or congestive heart failure.
  • It is typically a transitional rhythm between frequent premature atrial complexes (PACs) and atrial flutter / fibrillation.

AKA “Chaotic atrial tachycardia”

Electrocardiographic Features

  • Heart rate > 100 bpm (usually 100-150 bpm; may be as high as 250 bpm).
  • Irregularly irregular rhythm with varying PP, PR and RR intervals.
  • At least 3 distinct P-wave morphologies in the same lead.
  • Isoelectric baseline between P-waves (i.e. no flutter waves).
  • Absence of a single dominant atrial pacemaker (i.e. not just sinus rhythm with frequent PACs).
  • Some P waves may be nonconducted; others may be aberrantly conducted to the ventricles.

There may be additional electrocardiographic features suggestive of COPD.

Clinical Relevance

  • Usually occurs in seriously ill elderly patients with respiratory failure (e.g. exacerbation of COPD / CHF).
  • Tends to resolve following treatment of the underlying disorder.
  • The development of MAT during an acute illness is a poor prognostic sign, associated with a 60% in-hospital mortality and mean survival of just over a year. Death occurs due to the underlying illness; not the arrhythmia itself.

Arises due to a combination of factors that are present in hospitalised patients with acute-on-chronic respiratory failure:

  • Right atrial dilatation (from cor pulmonale )
  • Increased sympathetic drive
  • Hypoxia and hypercarbia
  • Beta-agonists
  • Theophylline
  • Electrolyte abnormalities: Hypokalaemia and hypomagnesaemia  (e.g. secondary to diuretics / beta-agonists)

The net result is increased atrial automaticity.

ECG Examples

Multifocal Atrial Tachycardia (MAT)

Multifocal atrial tachycardia:

  • Rapid irregular rhythm > 100 bpm.
  • At least 3 distinctive P-wave morphologies (arrows).

Multifocal Atrial Tachycardia (MAT) COPD 2

MAT with additional features of COPD :

  • Rapid, irregular rhythm with multiple P-wave morphologies (best seen in the rhythm strip).
  • Right axis deviation, dominant R wave in V1 and deep S wave in V6 suggest right ventricular hypertrophy due to cor pulmonale. 

Related Topics

  • The ECG in COPD
  • Right atrial enlargement (P pulmonale)
  • Right ventricular hypertrophy

Advanced Reading

  • Wiesbauer F, Kühn P. ECG Mastery: Yellow Belt online course. Understand ECG basics. Medmastery
  • Wiesbauer F, Kühn P. ECG Mastery: Blue Belt online course : Become an ECG expert. Medmastery
  • Kühn P, Houghton A. ECG Mastery: Black Belt Workshop . Advanced ECG interpretation. Medmastery
  • Rawshani A. Clinical ECG Interpretation ECG Waves
  • Smith SW. Dr Smith’s ECG blog .
  • Zimmerman FH. ECG Core Curriculum . 2023
  • Mattu A, Berberian J, Brady WJ. Emergency ECGs: Case-Based Review and Interpretations , 2022
  • Straus DG, Schocken DD. Marriott’s Practical Electrocardiography 13e, 2021
  • Brady WJ, Lipinski MJ et al. Electrocardiogram in Clinical Medicine . 1e, 2020
  • Mattu A, Tabas JA, Brady WJ. Electrocardiography in Emergency, Acute, and Critical Care . 2e, 2019
  • Hampton J, Adlam D. The ECG Made Practical 7e, 2019
  • Kühn P, Lang C, Wiesbauer F. ECG Mastery: The Simplest Way to Learn the ECG . 2015
  • Grauer K. ECG Pocket Brain (Expanded) 6e, 2014
  • Surawicz B, Knilans T. Chou’s Electrocardiography in Clinical Practice: Adult and Pediatric 6e, 2008
  • Chan TC. ECG in Emergency Medicine and Acute Care 1e, 2004

LITFL Further Reading

  • ECG Library Basics – Waves, Intervals, Segments and Clinical Interpretation
  • ECG A to Z by diagnosis – ECG interpretation in clinical context
  • ECG Exigency and Cardiovascular Curveball – ECG Clinical Cases
  • 100 ECG Quiz – Self-assessment tool for examination practice
  • ECG Reference SITES and BOOKS – the best of the rest

ECG LIBRARY

' src=

Emergency Physician in Prehospital and Retrieval Medicine in Sydney, Australia. He has a passion for ECG interpretation and medical education | ECG Library |

wandering pacemaker causes

Robert Buttner

MBBS (UWA) CCPU (RCE, Biliary, DVT, E-FAST, AAA) Adult/Paediatric Emergency Medicine Advanced Trainee in Melbourne, Australia. Special interests in diagnostic and procedural ultrasound, medical education, and ECG interpretation. Editor-in-chief of the LITFL ECG Library . Twitter: @rob_buttner

Leave a Reply Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Privacy Overview

Wandering Atrial Pacemaker ECG Interpretation with Sample Strip

Wandering atrial pacemaker rhythm strip features, authors and reviewers.

  • ECG heart rhythm modules: Thomas O'Brien.
  • ECG monitor simulation developer: Steve Collmann
  • 12 Lead Course: Dr. Michael Mazzini, MD .
  • Spanish language ECG: Breena R. Taira, MD, MPH
  • Medical review: Dr. Jonathan Keroes, MD
  • Medical review: Dr. Pedro Azevedo, MD, Cardiology
  • Last Update: 11/8/2021
  • Electrocardiography for Healthcare Professionals, 6th Edition Kathryn Booth and Thomas O'Brien ISBN10: 1265013470, ISBN13: 9781265013479 McGraw Hill, 2023
  • Rapid Interpretation of EKG's, Sixth Edition Dale Dublin Cover Publishing Company
  • EKG Reference Guide EKG.Academy
  • 12 Lead EKG for Nurses: Simple Steps to Interpret Rhythms, Arrhythmias, Blocks, Hypertrophy, Infarcts, & Cardiac Drugs Aaron Reed Create Space Independent Publishing
  • Heart Sounds and Murmurs: A Practical Guide with Audio CD-ROM 3rd Edition Elsevier-Health Sciences Division Barbara A. Erickson, PhD, RN, CCRN
  • The Virtual Cardiac Patient: A Multimedia Guide to Heart Sounds, Murmurs, EKG Jonathan Keroes, David Lieberman Publisher: Lippincott Williams & Wilkin) ISBN-10: 0781784425; ISBN-13: 978-0781784429
  • Project Semilla, UCLA Emergency Medicine, EKG Training Breena R. Taira, MD, MPH
  • ECG Reference Guide PracticalClinicalSkills.com

This website provides professional medical education. For medical care contact your doctor. 2024 ©MedEdu LLC. All Rights Reserved. Terms & Conditions | About Us | Privacy | Email Us | 1

mededu company logo

IMAGES

  1. 2.E Wandering pacemaker.

    wandering pacemaker causes

  2. ECG Educator Blog : Wandering Atrial Pacemaker (WAP)

    wandering pacemaker causes

  3. PPT

    wandering pacemaker causes

  4. WAP

    wandering pacemaker causes

  5. Alila Medical Media

    wandering pacemaker causes

  6. What is a Wandering Atrial Pacemaker? (with pictures)

    wandering pacemaker causes

VIDEO

  1. Leadless Pacemaker

  2. Pacemakers

  3. Wandering Biden's Causes E Crowd LAUGHTER...🎉🎉

  4. Pacemaker Potentials: History and Contemporary Understanding

  5. American Board Certified Cardiac Electrophysiologist giving a brief on cardiac devices#medical

  6. Wandering pacemaker

COMMENTS

  1. Wandering Atrial Pacemaker: What Is It?

    Causes of a Wandering Atrial Pacemaker. The upper right part of your heart has a group of cells called the sinoatrial (SA) node. Normally, the SA node sets the beat of your heart.

  2. Wandering atrial pacemaker

    Wandering atrial pacemaker (WAP) is an atrial rhythm where the pacemaking activity of the heart originates from different locations within the atria. This is different from normal pacemaking activity, where the sinoatrial node (SA node) is responsible for each heartbeat and keeps a steady rate and rhythm. Causes of wandering atrial pacemaker are unclear, but there may be factors leading to its ...

  3. Wandering Atrial Pacemaker

    This rhythm and multifocal atrial tachycardia are similar except for heart rate. The other possible explanation is that there is significant respiratory sinus arrhythmia, with uncovering of latent foci of pacemaker activity. Usually, it is associated with underlying lung disease. In the elderly, it may be a manifestation of sick sinus syndrome.

  4. WAP vs. MAT on ECG: What's the difference?

    The wandering atrial pacemaker has nothing to do with extrinsic cardiac hardware. ... Causes of WAP and MAT might include lung diseases, oxygenation deficiencies, electrolyte abnormalities, stimulant use and others (and may be a transitional rhythm between frequent PACs and Afib). Wandering atrial pacemaker is largely a benign rhythm.

  5. Wandering Atrial Pacemaker (WAP) ECG Review

    Wandering Atrial Pacemaker (WAP) ECG Review | Learn the Heart - Healio

  6. Ectopic Supraventricular Arrhythmias

    Wandering atrial pacemaker (multifocal atrial rhythm) is an irregularly irregular rhythm caused by the random discharge of multiple ectopic atrial foci. By definition, heart rate is ≤ 100 beats/minute. Except for the rate, features are the same as those of multifocal atrial tachycardia. Treatment is directed at causes. Ectopic ...

  7. Management of Common Arrhythmias: Part I. Supraventricular ...

    With wandering atrial pacemaker, the ECG shows variable P-wave morphology and PR intervals. The atrial impulses conduct in a 1:1 fashion and usually control the rhythm for several beats before ...

  8. Wandering atrial pacemaker

    Wandering atrial pacemaker. Non-arrhythmic cardiac causes: Acute coronary syndrome. Cardiomyopathy. Congenital heart disease. Congestive heart failure (CHF) Mitral valve prolapse. Pacemaker complication. Pericarditis.

  9. What Is a Wandering Atrial Pacemaker?

    It is possible to examine the insertion of a pacemaker for sinus node injury when dysfunction in the sinus nodes manifests as a wandering atrial pacemaker. A permanent pacemaker is a device that continually causes the cardiac muscle to contract by stimulating it with very low electrical impulses to maintain a regular heartbeat.

  10. A true case of wandering pacemaker

    A true case of wandering pacemaker. It is important to carefully review chest radiographs in patients with implanted cardiac devices and cardiac symptoms. Abandoned cardiac device leads are not without risk and can lead to complications years later. After weighing the risks and benefits, careful consideration should be given to complete device ...

  11. Multifocal atrial tachycardia

    Patients with multiple P-wave morphologies but a normal heart rate (60 to 100 bpm) are considered to have a wandering atrial pacemaker, since the heart rate does not meet criteria for a tachycardia. (See 'Terminology' below.) This topic will review the definition, pathogenesis, etiology, and treatment of MAT in adults.

  12. Abnormal rhythms of the atria

    If one of these clots blocks a vessel in the brain, it can cause a stroke. Atrial fibrillation causes about 15% of all strokes. ... Wandering atrial pacemaker and multifocal atrial tachycardia are examples of atrial rhythm disturbances in which frequent, unpredictable beats arise from different areas of the atria. These disturbances are usually ...

  13. Day 6: Ectopic Arrhythmias and Triggered Activity

    Wandering atrial pacemaker. Mechanisms and causes. There are three or more ectopic atrial pacemakers. This arrhythmia is typically seen in young healthy persons, particularly athletes. The etiology is uncertain. Heart rate—the heart rate is 60-100 and is usually irregular. ECG morphology

  14. Multifocal atrial tachycardia; EkG STRIP SEARCH

    If the rate is more than 100, this would be considered Multifocal Atrial Tachycardia (MAT). It is possible for a wandering atrial pacemaker to occur more often in the young and among athletes. The cause usually stems from an augmented vagal tone. An increase in the vagal tone causes a slower heart rate and allows the AV node or the atria to ...

  15. Wandering Pacemaker

    Wandering Pacemaker. To the Editor: An electrocardiographic pattern of irregular, multiform (multifocal), supraventricular beats with changing P wave morphology and varying P-R intervals has been referred to as wandering pacemaker. This term has been discouraged by some because it implies a mechanism which is not really known.

  16. Electrical Injury and Wandering Atrial Pacemaker

    The electric shock causes depolarisation of cardiac muscles and increases membrane pores of the cells resulting in arrhythmias; sinus tachycardia, ventricular premature beats, ventricular tachycardia, and atrial fibrillation are common [6,7]. Wandering atrial pacemaker (WAP) is a benign atrial arrhythmia that has been observed in this case study.

  17. Wandering Atrial Pacemaker EKG Interpretation with Rhythm Strip

    This article is a guide for interpreting abnormal Wandering Atrial Pacemaker EKGs, including qualifying criteria and a sample EKG rhythnm strip. Wandering atrial pacemaker is an arrhythmia originating in shifting pacemaker sites from the SA node to the atria and back to the SA node. On an ECG, the p-waves reflect the pacemaker shifts by shape variations. The PRI interval may vary from one beat ...

  18. Multifocal Atrial Tachycardia (MAT) • LITFL • ECG Library Diagnosis

    Multifocal Atrial Tachycardia (MAT) Overview. A rapid, irregular atrial rhythm arising from multiple ectopic foci within the atria. Most commonly seen in patients with severe COPD or congestive heart failure. It is typically a transitional rhythm between frequent premature atrial complexes (PACs) and atrial flutter / fibrillation.

  19. Wandering Atrial Pacemaker ECG Interpretation with Sample Strip

    Wandering Atrial Pacemaker Rhythm Strip Features. Rate: Normal (60-100 bpm) Rhythm: May be irregular. P Wave: Changing shape and size from beat to beat (at least three different forms) PR Interval: Variable. QRS: Normal (0.06-0.10 sec) The electrical impulses causing the atrial activity are moving or wandering.

  20. Abnormal Heart Rhythms: Types, Causes, Diagnosis, Treatment

    An abnormal heart rhythm is when your heart beats too fast, too slow, or irregularly. It's also called an arrhythmia. Your heart contains a complex system of valves, nodes, and chambers. They ...

  21. Cureus

    Wandering atrial pacemaker (WAP) is a benign atrial arrhythmia that has been observed in this case study. WAP and multifocal atrial tachycardia (MAT) differ only with the heart rate - WAP has a heart rate less than 100 bpm whereas MAT has a heart rate greater than 100 bpm.

  22. Cureus

    The electric shock causes depolarisation of cardiac muscles and increases membrane pores of the cells resulting in arrhythmias; sinus tachycardia, ventricular premature beats, ventricular tachycardia, and atrial fibrillation are common . Wandering atrial pacemaker (WAP) is a benign atrial arrhythmia that has been observed in this case study.